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Using Jones’s Trick to Solve for Steady State Growth
Rates

Balanced growth requires that endogenous aggregate variables like Y andK grow at common
rates in the steady state, so that the ratio K/Y should be constant. If we accept this at the
outset as a necessary feature of the steady state it becomes possible to quickly deduce steady
state growth rates from the production function alone. Jones uses this trick in Chapter 9
to facilitate the derivation of growth rates in the Solow model with natural resources as a
third factor of production. This handout begins by verifying that the trick works in some
of the versions of the Solow model with which we are already familiar: without technical
change, with technical change, and under the MRW specification of human capital. It then
proceeds to models relevant to the analysis of Chapter 9.

1. Without Technical Change

The production function is Y = KαL1−α.
Transform this to a version in which the ratio K/Y appears:

Y

Y α
=

Kα

Y α
L1−α

or

Y 1−α =

(
K

Y

)α
L1−α.

Isolate Y on the left hand side by raising both sides to the power 1/(1− α):

Y =

(
K

Y

)α/(1−α)
L.

Now take logarithms and time-derivatives.

log Y =
α

1− α
log

(
K

Y

)
+ logL

d log Y

dt
=

α

1− α

d log(K/Y )

dt
+

d logL

dt

Using the premise that the ratio K/Y should be constant in a steady state we conclude that

Ẏ

Y
=

α

1− α
· 0 + L̇

L
= 0 + n = n,

which we know to be the correct steady state growth rate for Y in the Solow model without
technical change. From this we can obtain the growth rates of any other variables of interest,
such as output per worker y = Y/L:

ẏ

y
=

Ẏ

Y
− L̇

L
= n− n = 0.
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2. With Labour-Augmenting Technical Change

The production function is Y = Kα(AL)1−α.
Transform this to a version in which the ratio K/Y appears:

Y 1−α =

(
K

Y

)α
(AL)1−α.

Isolate Y on the left hand side by raising both sides to the power 1/(1− α):

Y =

(
K

Y

)α/(1−α)
AL.

Now take logarithms and time-derivatives.

log Y =
α

1− α
log

(
K

Y

)
+ logA+ logL

d log Y

dt
=

α

1− α

d log(K/Y )

dt
+

d logA

dt
+

d logL

dt

Using the premise that the ratio K/Y should be constant in a steady state we conclude that

Ẏ

Y
=

α

1− α
· 0 + Ȧ

A
+

L̇

L
= 0 + gA + n = gA + n,

which we know to be the correct steady state growth rate for Y in the Solow model with
technical change. From this we can obtain the growth rates of any other variables of interest,
such as output per worker y = Y/L:

ẏ

y
=

Ẏ

Y
− L̇

L
= gA + n− n = gA.

This is the classic result that technical change is the engine of growth: it is the fundamental
source of sustained growth in living standards.
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3. Alternative Specification for Technical Change

The above result is not sensitive to the specification of technical change. Consider the
alternative specification of the production function as

Y = BKαL1−α where B ≡ A1−α.

The growth rates of B and A are related by

gB ≡ Ḃ

B
= (1− α)

Ȧ

A
= (1− α)gA.

Transform the production function to a version in which the ratio K/Y appears:

Y 1−α = B

(
K

Y

)α
L1−α.

Isolate Y on the left hand side by raising both sides to the power 1/(1− α):

Y = B1/(1−α)
(
K

Y

)α/(1−α)
AL.

Now take logarithms and time-derivatives.

log Y =
1

1− α
logB +

α

1− α
log

(
K

Y

)
+ logL

d log Y

dt
=

1

1− α

d logB

dt
+

α

1− α

d log(K/Y )

dt
+

d logL

dt

Using the premise that the ratio K/Y should be constant in a steady state we conclude that

Ẏ

Y
=

1

1− α

Ḃ

B
+

α

1− α
· 0 + L̇

L
=

1

1− α
gB + 0 + n =

1

1− α
gB + n,

Of course this can be restated in terms of gA if desired, yielding the usual result

Ẏ

Y
=

1

1− α
(1− α)gA + n = gA + n.
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4. The Mankiw-Romer-Weil Approach to Human Capital

The production function is Y = KαHβ(AL)1−α−β .
Both K and H are accumulable factors and play symmetric roles in the model. Thus,

by the same logic that K/Y should be constant in a steady state, so should H/Y .
We therefore proceed by transforming the production function to a version in which the

ratios K/Y and H/Y appear:

Y

Y α+β
=

Kα

Y α

Hβ

Y β
(AL)1−α−β

or

Y 1−α−β =

(
K

Y

)α(
H

Y

)β
(AL)1−α−β .

Isolate Y on the left hand side by raising both sides to the power 1/(1− α− β):

Y =

(
K

Y

)α/(1−α−β) (
H

Y

)β/(1−α−β)
AL.

Now take logarithms and time-derivatives.

log Y =
α

1− α− β
log

(
K

Y

)
+

β

1− α− β
log

(
H

Y

)
+ logA+ logL

d log Y

dt
=

α

1− α− β

d log(K/Y )

dt
+

β

1− α− β

d log(H/Y )

dt
+

d logA

dt
+

d logL

dt

Using the premise that the ratios K/Y and H/Y should be constant in a steady state we
conclude that

Ẏ

Y
=

α

1− α− β
· 0 + β

1− α− β
· 0 + Ȧ

A
+

L̇

L
= 0 + 0 + gA + n = gA + n,

which we know to be the correct steady state growth rate for Y in this model. Thus we find
that the conclusion that living standards grow at the rate of labour-augmenting technical
change, ẏ/y = gA, is robust to the introduction of human capital.
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5. Natural Resources that Do Not Become Increasingly Scarce

Formulated in terms of B

Consider a natural resource H that does not become increasingly scarce in the sense that it
remains in constant proportion ϕ to L: H/L = ϕ. It follows that H grows at the same rate
as L: Ḣ/H = n.

The production function is
Y = BKαHβL1−α−β

where B = A1−α−β and so

gB ≡ Ḃ

B
= (1− α− β)

Ȧ

A
= (1− α− β)gA.

(Note: Although H is not interpreted as human capital, formally this model combines
the MRW three-factor production function with Jones’s specification of human capital,
H = eψuL. We have introduced the notational simplification ϕ = eψu.)

Now K and H no longer play symmetric roles in the model and so, although K/Y is
still assumed to be constant in a steady state, there is no reason to assume this to be true
of H/Y a priori.

We therefore proceed by transforming the production function to a version in which the
ratio K/Y appears:

Y

Y α
= B

Kα

Y α
HβL1−α−β

or

Y 1−α = B

(
K

Y

)α
HβL1−α−β .

Isolate Y on the left hand side by raising both sides to the power 1/(1− α):

Y = B1/(1−α)
(
K

Y

)α/(1−α)
Hβ/(1−α)L(1−α−β)/(1−α).

Now take logarithms and time-derivatives.

log Y =
1

1− α
logB +

α

1− α
log

(
K

Y

)
+

β

1− α
logH +

1− α− β

1− α
logL

d log Y

dt
=

1

1− α

d logB

dt
+

α

1− α

d log(K/Y )

dt
+

β

1− α

d logH

dt
+

1− α− β

1− α

d logL

dt

Using the premise that the ratio K/Y should be constant in a steady state, and defining
the notation β̄ = β/(1− α), we conclude that

Ẏ

Y
=

1

1− α

Ḃ

B
+

α

1− α
· 0 + β̄

Ḣ

H
+ (1− β̄)

L̇

L

=
1

1− α
gB + β̄n+ (1− β̄)n

=
1

1− α
gB + n.

Alternatively, restated in terms of gA this is

Ẏ

Y
=

1− α− β

1− α
gA + n = (1− β̄)gA + n,

which reduces to the familiar growth rates of the textbook model in the appropriate special
cases:

Ẏ

Y
= (1− β̄)gA + n =

{
gA + n if β = 0

n if gA = 0.
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The steady state growth rate of output per worker is

ẏ

y
=

Ẏ

Y
− n = (1− β̄)gA (≡ g in Jones’s notation.)

Note that the “g” of Jones’s notation may be defined alternatively as

g ≡ (1− β̄)gA =
1

1− α
gB .

Its interpretation is as the growth rate of output per worker in the presence of natural
resources that are not becoming increasingly scarce.

Note further that β̄ may be written

β̄ =
β

1− α
=

β

β + (1− α− β)
.

Recall that β and 1−α− β are each factor shares (of H and L, respectively) and so satisfy
0 < β < 1 and 0 < 1− α− β < 1. It follows that β̄ is a positive fraction: 0 < β̄ < 1.

Thus there is a growth drag of natural resources,

ẏ

y
= (1− β̄)gA < gA, because 0 < 1− β̄ < 1,

even when the natural resource does not become increasingly scarce. In the special case in
which the natural resource is unimportant in production and so has a factor share of zero
(β = 0 and so β̄ = 0) the steady state growth rate reduces to the familiar

ẏ

y
= (1− β̄)gA = gA, if β̄ = β = 0.

What kind of variable is constant in the steady state of this model? It is

y

A1−β̄ =
Y

A1−β̄L
.

To see this take logs and time derivatives to obtain

ẏ

y
− (1− β̄)

Ȧ

A
= (1− β̄)gA − (1− β̄)gA = 0.

This indicates why it would be difficult to solve the model by transforming it to a form that
is in terms of such variables, and hence the value of Jones’s modeling trick.
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6. Renewable Natural Resources

Consider a natural resource T that is constant.
The production function is

Y = BKαT βL1−α−β

where B = A1−α−β and so

gB ≡ Ḃ

B
= (1− α− β)

Ȧ

A
= (1− α− β)gA.

We proceed by transforming the production function to a version in which the ratio K/Y
appears:

Y 1−α = B

(
K

Y

)α
T βL1−α−β .

Isolate Y on the left hand side by raising both sides to the power 1/(1− α):

Y = B1/(1−α)
(
K

Y

)α/(1−α)
T β/(1−α)L(1−α−β)/(1−α).

Now take logarithms and time-derivatives.

log Y =
1

1− α
logB +

α

1− α
log

(
K

Y

)
+

β

1− α
log T +

1− α− β

1− α
logL

d log Y

dt
=

1

1− α

d logB

dt
+

α

1− α

d log(K/Y )

dt
+

β

1− α

d log T

dt
+

1− α− β

1− α

d logL

dt

Using the premise that the ratio K/Y should be constant in a steady state, and defining
the notation β̄ = β/(1− α), we conclude that

Ẏ

Y
=

1

1− α

Ḃ

B
+

α

1− α
· 0 + β̄ · 0 + (1− β̄)

L̇

L

=
1

1− α
gB + (1− β̄)n

=
1− α− β

1− α
gA + (1− β̄)n

= (1− β̄)(gA + n).

In the special case in which the natural resource is unimportant in production and so has a
factor share of zero (β = 0 and so β̄ = 0) this reduces to the familiar

Ẏ

Y
= (1− β̄)(gA + n) = gA + n if β = 0.

In general, the steady state growth rate of output per worker is

ẏ

y
=

Ẏ

Y
− n = (1− β̄)(gA + n)− n

=

{
gA − β̄(gA + n) < gA (1)

(1− β̄)gA − β̄n = g − β̄n < g (2) where “g”= (1− β̄)gA

These expressions describe the growth drag of resource scarcity; expression (2) is the version
found in Jones (p. 172, last displayed equation). The size of the growth drag depends on
the benchmark against which it is compared:

Expression (1) compares ẏ/y against the growth rate gA of the textbook Solow model.
Expression (2) compares ẏ/y against the growth rate “g”= (1− β̄)gA of the model

with a resource that is not subject to increasing scarcity.

In either case the growth drag is negative. In expression (1) it is particularly easy to see
that the magnitude of this negative drag becomes larger with the factor share β, which
represents the importance of the scarce resource in production.
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7. Nonrenewable Natural Resources

Consider a natural resource that is nonrenewable. It has stock R from which flow E is
extracted per unit time. In continuous time R is therefore depleted as Ṙ = −E. The
simplest specification for the rate of extraction is to assume that the flow E is a constant
proportion of the stock R denoted sE :

sE =
E

R
.

Thus if sE = 0.01 it means that 1% of the resource stock is extracted each period. Using
Ṙ = −E it follows that

Ṙ

R
= −sE ,

so that the stock declines at instantaneous growth rate −0.01.
Finally, we have that E = sER and so, given that the extraction rate sE is assumed

constant,
Ė

E
=

Ṙ

R
= −sE .

Thus both the stock R(t) and the flow extracted from it, E(t), decline continuously at
the instantaneous negative growth rate −sE . They therefore evolve in their levels according
to continuous growth processes similar to what we have used for labour and technology, the
only difference being that now the growth rate is negative. In the case of the stock R(t),
for example, we can write

R(t) = R(0)e−sEt.

It is the flow E that enters the production function:

Y = BKαEγL1−α−γ

where B = A1−α−γ and so, similar to before,

gB ≡ Ḃ

B
= (1− α− γ)

Ȧ

A
= (1− α− γ)gA.

We proceed much as before, transforming the production function to a version in which
the ratio K/Y appears:

Y 1−α = B

(
K

Y

)α
EγL1−α−γ .

Isolate Y on the left hand side by raising both sides to the power 1/(1− α):

Y = B1/(1−α)
(
K

Y

)α/(1−α)
Eγ/(1−α)L(1−α−γ)/(1−α).

Now take logarithms and time-derivatives.

log Y =
1

1− α
logB +

α

1− α
log

(
K

Y

)
+

γ

1− α
logE +

1− α− γ

1− α
logL

d log Y

dt
=

1

1− α

d logB

dt
+

α

1− α

d log(K/Y )

dt
+

γ

1− α

d logE

dt
+

1− α− γ

1− α

d logL

dt

Using the premise that the ratio K/Y should be constant in a steady state, and defining
the notation γ̄ = γ/(1− α), we conclude that

Ẏ

Y
=

1

1− α

Ḃ

B
+

α

1− α
· 0− γ̄sE + (1− γ̄)

L̇

L

=
1

1− α
gB − γ̄sE + (1− γ̄)n

=
1− α− γ

1− α
gA − γ̄sE + (1− γ̄)n

= (1− γ̄)(gA + n)− γ̄sE .
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In the special case in which the natural resource is unimportant in production and so has a
factor share of zero (γ = 0 and so γ̄ = 0) this reduces to the familiar

Ẏ

Y
= (1− γ̄)(gA + n)− γ̄sE = gA + n if γ = 0.

Similarly, in this special case the growth rate output per worker is ẏ/y = gA, which we know
to be correct for the textbook model.

In general the steady state growth rate of output per worker is

ẏ

y
=

Ẏ

Y
− n

= (1− γ̄)(gA + n)− γ̄sE − n

= (1− γ̄)gA − γ̄(n+ sE)

<


gA, the growth rate in the absence of natural resources (γ = 0)

(1− γ̄)gA ≡ g, the growth rate when the natural resource does not become increasingly scarce

(1− γ̄)gA − γ̄n the growth rate when the natural resource is renewable

These inequalities follow because, just as we reasoned previously for β̄, γ̄ is a positive
fraction: 0 < γ̄ < 1. Thus the growth drag of a nonrenewable resource is even greater than
the growth drags arising from the other types of natural resources we have studied.

This general expression for ẏ/y yields a new comparative statics result: an increase in
the extraction rate sE reduces steady state ẏ/y.
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